Research Group I *Info Mine* ×

Association of Independent Consultants and Experts in the Field of Mineral Resources, Metallurgy and Chemical Industry

Sulfur in CIS

Sample PDF

Moscow January, 2007

Internet: www.infomine.ru e-mail: info@infomine.ru

CONTENTS

INTRODUCTION	10
I Production of Sulfur in CIS	12
I.1 Methods of Obtaining Sulfur in CIS	12
I.1.1 Extraction of Sulfur from Virgin Ore	12
I.1.2 Obtaining Sulfur from Hydrogen Sulfide and Natural Gas	16
I.1.3 Obtaining Sulfur from Sulfur Dioxide	17
I.2 Technology of Production of Sulfur and Raw Materials Used by the Largest	
Manufacturers	18
I.2.1 Principal Types of Sulfur Ores and Methods of Their Development	18
I.2.2 Principal Types of Oil and Gas Deposits	21
1.2.3 Exhaust Gases of Non-Ferrous Metallurgy	31
1.3 Quality of Sulfur Produced by the Largest Manufacturers (AGP, OGP, JSC	
"Norilsky Nikel", MSIE "Sera", LLP "Tengizshevroil", PE "Turkmenmineral").	32
I.4 Production of Sulfur in CIS in 1997-2005 and the First Half of 2006 with	
Breaking down Over Production of: Gas Sulfur, Oil Sulfur, Sulfur-Pyrite Product	t,
Virgin Sulfur	36
I.4.1 Production of Sulfur by Largest Manufacturers in 1997-2005 and the First Half of 2006	636
I.4.2 Current Situation at Largest Manufacturers of Sulfur in CIS	49
1.4.3 Forecast of Production of Sulfur in CIS to 2010 with Breaking down Over Types of	70
Production and Large Manufacturers	70
II Export and Import of Sulfur in CIS (Russia, Ukraine, Kazakhstan) in 1997-	^
2005 and the First Half of 2006	.72
II.1 Export and Import of Sulfur in Russia in 1997-2005 and the First Half of 200)6
	72
II.1.1 Export and Import Volume of Sulfur in Russia in 1997-2005 and the First Half of 200	6
II 1.2 Tandanaias and Easturas of Easting Trade Operations with Sulfur in DE	12 74
II.1.2 Tendencies and Features of Foreign Trade Operations with Suffur in KF	/4 78
II 2 Export and Import of Sulfur in Ukraine in 1998-2005 and the First Half of	
2006	Q 1
II 2.1 Export and Import Volumes of Sulfur in Ukraine in 1998-2005 and the First Half of	01
2006	81
II.2.2 Tendencies and Features of Foreign Trade Operations with Sulfur in Ukraine	83
II.2.3 Principal Directions of Export and Import of Sulfur in Ukraine	85
II.3 Export and Import of Sulfur in Kazakhstan in 1999-2005	87
II.3.1 Export and Import Volume of Sulfur in Kazakhstan in 1999-2005	87
II.3.2 Principal Directions of Export and Import of Sulfur in Kazakhstan	87
III Review of Prices for Sulfur	90
III.1 Home Prices for Sulfur in RF in 2000-2005 and the First Half of 2006	90
III.2 Dynamics of Export and Import Prices in Russia and in Ukraine in 2000-200	05
and the First Half of 2006	93
III.2.1 Dynamics of Export and Import Prices in Russia in 1997-2005 and the First Half of	
2006	93
III.2.2 Dynamics of Export and Import Prices in Ukraine in 1999-2005 and the First Half of	
2006	97
IV Consumption of Sulfur in CIS in 1997-2005 1	100

IV.1 Balance of Consumption of Sulfur (Russia, Ukraine, Kazakhstan)	100
IV.1.1 Balance of Consumption of Sulfur in Russia in 1997-2005	100
IV.1.2 Balance of Consumption of Sulfur in Ukraine in 1998-2005	102
IV.1.3 Balance of Consumption of Sulfur in Kazakhstan in 1999-2005	103
IV.2 Structure of Consumption of Sulfur in Russia	104
IV.3 Principal Applications of Sulfur in Russia	107
IV.3.1 Chemical and Petrochemical Industry	107
IV.3.2 Pulp-and-Paper Industry	109
IV.4 Large Russian Consumers and Their Projects	111
IV.4.1 LLC "Balakovskiye Mineralnye Udobreniya" (Balakovo, Saratov Region)	112
IV.4.2 JSC "Voskresenskiye Mineralnye Udobreniya" (Voskresensk, Moscow Region)	115
IV.4.3 LLC "PG "Fosforit"" (Kingisepp, Leningrad Region)	119
V Forecast of Consumption of Sulfur in Russia Considering Types and	
Applications for the Period Until 2010	122
Appendix 1: Map of the Largest Deposits of Virgin Sulfur in CIS	126
Appendix 2: Addresses of Enterprises Producing Sulfur in CIS	127

TABLES

Table 1: Enterprises in CIS Possessing Capacities for Producing Sulfur, and
Technologies Used
Table 2: Deposits of Virgin Sulfur in CIS and Enterprises Developing Them
Table 3: Characteristics of Exploited Hydrogen-Sulfide Deposits of Natural Gas in
CIS
Table 4: Characteristics of Oil from the Largest Deposits in CIS
Table 5: Characteristics of Oil-Processing Enterprises in CIS Producing Sulfur or
Sulfuric Acid (beginning of 2006)
Table 6: Production Potential for the Main Products of Coke Enterprises in Ukraine
Table 7: Mineralogical Composition of Copper and Nickel Concentrates Obtained at
"Norilskaya" and "Talnakhskaya" Factories from Rich Ore
Table 8: Types of Sulfur Produced by Leading Manufacturers in CIS 32
Table 9: Ouality Requirements for Technical Sulfur (GOST 127-93)
Table 10: Production of Sulfur in CIS in 1997-2005 (kt)
Table 11: Principal Processes for Obtaining Sulfur in CIS in 2000-2005 (kt)
Table 12: Production of Sulfur in CIS in 1997-2005 and the First Half of 2006 (kt) 43
Table 13: Production of Sulfur in Ukraine in 1998-2005 (kt) 48
Table 14: Largest Manufacturers of Sulfur in CIS in 2004-2005 49
Table 15: Principal Foreign Consumers of Sulfur Produced at LLC
"Astrakhangazprom" in 2003-2005
Table 16: Largest Russian Consumers of Sulfur Produced at LLC
"Astrakhangazprom", railway, 2004-2005
Table 17: SWOT Analysis of LLC "Astrakhangazprom" 54
Table 18: Largest Russian Consumers of Sulfur Produced at LLC
"Orenburggazprom", railway, 2004-2005
Table 19: SWOT Analysis of LLC "Orenburggazprom" (Orenburg)
Table 20: Principal Foreign Consumers of Sulfur Produced at MSIE "Sera" in 2004-
2005
Table 21: Forecast of Production of Sulfur in CIS (Types) to 2010 (million tons)70
Table 22: Forecast of Production of Sulfur by Largest Manufacturers in CIS for the
Period to 2010 (kt)
Table 22: Foreign Trade with Sulfur in RF in 1997-2005 and the First Half of 2006
(kt)
Table 24: Export of Sulfur by Russian Enterprises in 2003-2005 74
Table 25: Largest Russian Consumers of Imported Sulfur in 2004-2005 (kt)
Table 26: Directions of Export of Sulfur in Russia in 2003-2005 78
Table 27: Directions of Import of Sulfur in Russia in 2003-2005
Table 28: Foreign Trade with Sulfur in Ukraine in 1998-2005 and the First Half of
2006 (kt)
Table 29: Largest Ukrainian Consumers of Imported Sulfur in 2004-2005
Table 30: Directions of Export of Sulfur in Ukraine in 2002-2005
Table 31: Directions of Import of Sulfur in Ukraine in 2002-2005

Table 22: Foreign Trade with Sulfur in Kazakhatan in 1000 2005 (kt)
Table 52. Foleigh Thade with Sulful III Kazaklistali III 1999-2005 (kt)
Table 33: Directions of Export of Sulfur in Kazakhstan in 2002-2005
Table 34: Directions of Import of Sulfur in Kazakhstan in 2002-200589
Table 35: Home Prices for Sulfur Quoted by the Largest Russian Manufacturers of
the Product (End 2004 and 2006) (Rubles per Ton, Adjusted for VAT)
Table 36: Principal Financial Indices of Export of Sulfur in RF in 2002-2005* 94
Table 37: Export Prices Quoted by Russian Manufacturers of Sulfur and Traders in
2002-2005 (\$/ton)*
Table 38: Principal Financial Indices of Export of Sulfur in Ukraine in 2002-2005.98
Table 35: Principal Financial Indices of Import of Sulfur in Ukraine in 2002-2005.99
Table 40: Volume of Consumption of Sulfur in Russia in 1997-2005 (kt) 100
Table 41: Volume of Consumption of Sulfur in Ukraine in 1998-2005 (kt) 102
Table 42: Volume of Consumption of Sulfur in Kazakhstan in 1999-2005 (kt) 103
Table 43: Structure of Consumption of Sulfur in Russia in 2004-2005 (kt) 105
Table 44: Largest Russian Consumers of Sulfur in 2004-2005 (kt) 111
Table 45: Structure of Sulfur Supply at LLC "Balakovskiye Mineralnye Udobreniya"
in 2004-2005
Table 46: Structure of Sulfur Supply at JSC "Voskresenskiye Mineralnye
Udobreniya" in 2004-2005 117
Table 47: Production of Principal Commodity Items at LLC "PG "Fosforit"" in 1999-
2005 (kt)
Table 48: Forecast of Consumption of Sulfur in Russia for the Period Until 2020 . 124

FIGURES

Figure 1: Production of Sulfur in CIS in 1997-2005 and the First Half of 2006	
(million tons)	5
Figure 2: Share of Production of Sulfur in CIS in the Whole Structure of Its	
Production in 1997-2005 and the First Half of 2006 (%)	3
Figure 3: Production of Sulfur in Russia and CIS in 1997-2005 and the First Half of	
2006 (million tons)	3
Figure 4: Pattern of Production of Sulfur in CIS in 2005	L
Figure 5: Production of Sulfur in Russia in 1997-2005 (million tons))
Figure 6: Loading of Capacities for Production of Sulfur by Largest Manufacturers in	
Russia in 2005 (%)	5
Figure 7: Branch Pattern of Production of Sulfur in Russia in 2004-2005	5
Figure 8: Loading of Capacities for Production of Sulfur by Manufacturers in	
Ukraine in 2005 (%)	7
Figure 9: Production of Sulfur at LLC "Astrakhangazprom" in 1990-2005 (million	
tons)	L
Figure 10: Production of Sulfur at LLC "Orenburggazprom" in 1980-2005 (million	
tons)	5
Figure 11: Production of Sulfur at JSC "GMK "Norilsky Nikel"" in 1997-2005 (kt)60)
Figure 12: Production of Sulfur at MSIE "Sera" in 1992-2005 (kt)	;
Figure 13: Dynamics of Oil Extraction (with Gas Condensate) and Production of	
Sulfur at LLP "Tengizshevroil" in 1997-2005 (million tons))
Figure 14: Production of Sulfur at PE "Turkmenmineral" in 1995-2005 (kt) 69)
Figure 15: Ratio between Export and Production of Sulfur in Russia in 1997-2005	
and the First Half of 2006 (%)73	;
Figure 16: Share of Exports of Sulfur as Compared with Production by Russian	
Manufacturers in 2003-2005 (%)	,
Figure 17: Structure of Export of Sulfur in RF in 2005 (Kinds of the Product)76)
Figure 18: Structure of Import of Sulfur in RF in 2005 (Kinds of the Product)76)
Figure 19: Ratio between the Volumes of Foreign Trade Operations and Production	
of Sulfur in Ukraine in 1998-2004 (%)	2
Figure 20: Share of the Product of MSIE "Sera" in the Structure of Export of Sulfur	_
in Ukraine in 2003-2005 (%)	;
Figure 21: Dynamics of Average Wholesale Prices Quoted by Manufacturers of	
Sulfur in RF in 2000-2005 and the First Half of 2006 (Rubles per Ton, Not	
Adjusted for VAT))
Figure 22: Dynamics of Export and Import Prices for Sulfur in Russia in 1997-2005	
and the First Half of 2006 (\$/t)	5
Figure 23: Principal Financial Indices of Import of Sulfur in RF in 2000-2005 and the	;
First Half of 2006)
Figure 24: Dynamics of Export and Import Prices for Sulfur in Ukraine in 1999-2005	-
and the First Half of 2006 (grivnas per ton)	1
Figure 25: Indices of Export and Production of Sulfur in Russia (percentage of 1997)	
	L

Figure 26: Structure of Consumption of Sulfur in RF in Fields of Application in	2005 104
Figure 27: Production of Principal Commodity Items at LLC "Balakovskiye	
Mineralnye Udobreniya" in 1999-2005 (kt)	113
Figure 28: Production of Principal Commodity Items at JSC "Voskresenskiye	
Mineralnye Udobreniya" in 1997-2005 (kt)	116
Figure 29: Structure of Sulfur Supplies at LLC "PG "Fosforit"" in 2005	120
Figure 30: Development of Industries Using the Most Volume of Sulfur in RF fo	or the
Period until 2010 (% of 2000)	123
Figure 31: Forecast of Consumption of Sulfur in RF (Kinds) in 2010	125

SUMMARY

Sulfur is a chemical element rather common in nature, the average mass content of which in the earth's crust being 0.05%, and 0.09% in the sea and ocean water. Sulfur and its combinations usually occur in solid, liquid and gaseous states. Solid sulfur (brimstone) is the most common type, as well as its minerals, such as pyrite (FeS₂), chalcopyrite (CuFeS₂), galena (PbS), black jack (ZnS), and the sulfate rock, such as barite (BaSO₄) and gypsum (CaSO₄·2H₂O). Besides, sulfur makes a part of natural coal and albumens.

Over a half of sulfur obtained in the world is used for producing sulfuric acid, while 25% of the substance obtained is used at production of sulfuric salts (mainly sulfites). The rest of the product is used in rubber-processing industry (as curing agent), in agriculture (for coping with diseases of plants, mainly of vine and cotton-plant), at production of colorants and luminous compounds, artificial fiber, matches and explosives.

Sulfur plays a special role in medicine, where the ability of sulfur is used of interaction with organic substances of human body forming sulfides and pentacarbothionic acid, the presence of which influence antimicrobial and antiparasitic effects.

Sulfur combinations are one of the major polluting agents for environment. The principal source of their formation is burning of coal and oil products. At that, 96% of sulfur goes to air in the form of SO_2 , and the rest are sulfates, H_2S , CS_2 , COS, and other combinations. Besides the negative ecological effect, elemental sulfur, in powder form, brings irritation to respiratory apparatus, mucous membrane, and leads to eczema. MPC in air is 0.07 mg/m³.

Sulfur belongs to a category of large-volume products of basic chemistry – in the period of 1997-2005, manufacturing of the product in six out of twelve CIS countries varied within the range from 4.2 to 8.2 million tons per year; at that, the largest production was observed in the last year of the said period.

Existing methods of production of sulfur comprise its extraction from virgin ore by open (open-pit) or mining-technological method, obtaining sulfur from hydrogen sulfide of industrial and natural gases, as well from sulfur dioxide evolving at metallurgical processing of concentrates of sulfide minerals.

The total potential of industrial enterprises producing sulfur on the territory of CIS is 11.42 million tons per year; in 2005, only 73.2% were used, and, at that, 6.30 million tons of the product were manufactured in Russia, which was 75.3% of the total production in CIS.

In the pattern of foreign trade operations with sulfur in RF, export operations dominate, the annual volume of which ten-fold exceeds the import of the product. In 2005, domestic companies exported abroad 3.92 million tons of sulfur, which was 10.6% less than the corresponding index of the previous year, while the amount of the product imported in the country reached 162.5 kt, 1.2 fold exceeding the analogous index of 2004.

In 2005, three Russian manufacturers exported sulfur abroad, so did some

trading companies, the share of which being only 0.5% of the total exports volume in the country.

In the middle of 2006, average wholesale price for a ton of sulfur increased by 2.4% in Russia, as compared with corresponding index of the previous year, and grew up to 384 (not adjusted for VAT). The average export price for sulfur in 2005 was on the level of \$19.4 per ton, the import price was \$21.2 per ton.

In 2005, "apparent" consumption of sulfur in Russia rose by 45.5% as compared with the analogous index of the previous year, thus reaching a level of 2.54 million tons. At that, the index of actual usage of the product in the country is evaluated as 2.00 million tons: the difference observed can be explained by formation of the unrealized rest over 0.5 million tons. Most of the product was used in chemical and petrochemical industries, which consumed 1.80 million tons of the product in 2005, i. e. 90.1% of the total Russian consumption. Production of chemical fertilizers (1.18 million tons) is the main direction of usage of sulfur in this sector of Russian economy, as well as production of sulfuric acid (0.49 million tons).

Analysis of dynamics of production of sulfur in Russia over the recent years, as well as projects for development of key enterprises of the sub-industry, allow forecasting increasing production volume in RF in the nearest years, which, in 2006, will be 6.40 million tons, in 2008 – 6.60 million tons, and in 2010 will reach 6.92 million tons. Dynamics of production of sulfur in Russia, along with Kazakhstan, the other leading manufacturer, will form a tendency of manufacturing the product over all CIS countries. According to forecast of "InfoMine", production of sulfur in CIS will be 10.00 million tons in 2008, and in 2010, will exceed this value by 10.7%, reaching 11.07 million tons.

INTRODUCTION

Sulfur is a chemical element rather common in nature, the average mass content of which in the earth's crust being 0.05%, and 0.09% in the sea and ocean water. Sulfur and its combinations usually occur in solid, liquid and gaseous states. Solid sulfur (brimstone) is the most common type, as well as its minerals, such as pyrite (FeS₂), chalcopyrite (CuFeS₂), galena (PbS), black jack (ZnS), and the sulfate rock, such as barite (BaSO₄) and gypsum (CaSO₄·2H₂O). Besides, sulfur makes a part of natural coal and albumens; in especially large amounts, this substance occurs in keratin of hair, plume and albumens. Sulfur in gaseous state, presented by hydrogen sulfide (H₂S), has rarer occurrence in nature than that in solid state. The least common in nature is liquid sulfur, which occurs in oil in the form of sulfur-organic combinations.

In the earth's geological history, sources of sulfur were mainly volcanic products containing sulfur dioxide and hydrogen sulfide. Now, over 200 sulfuric minerals are known, formed at endogenous processes. Human economic activity speeded up migration of sulfur, thus intensifying oxidation of sulfides: sulfates dominate among over 150 minerals formed in biosphere.

Many processes going in biosphere lead to concentration of sulfur, which accumulates in humus of soil, coal, oil, seas and oceans, as well as in underground water, lakes and salt marshes. Generally, one can speak of a turnover of sulfur in biosphere: it is brought to continents with atmospheric precipitation and comes back to oceans with drainage.

People have known sulfur in virgin state, as well as in the form of sulfuric chemical combinations, since ancient times, probably, since the 4th century B. C. The first mentions of it can be found in Homer's poems, and later, in the Bible. Sulfur always made a part of incense for religious rituals, as it was supposed that the smell of the products of its burning would banish all evil spirits. Skin diseases had been cured with sulfuric compounds long before. Somewhat later, sulfur became a necessary component of fiery mixtures used at war: in particular, it formed a part of "Greek fire", known in Byzantium in the 10th century A. D. Two centuries earlier, people in China learned to use sulfur for pyrotechnic purposes. In the period of Arabic alchemy, a hypothesis emerged, according to which the sulfur ("root of combustibility"), along with mercury ("root of metallic properties"), was supposed to be a constituent part of all metals.

A.Lavoisieur, a French chemist, discovered the elemental nature of sulfur, and included the element into the list of simple non-metallic bodies in 1789. E.Mitscherlich, a German scientist, discovered allotropy of sulfur in 1822. Along with other 62 elements, sulfur was included in the first version of Mendeleyev's periodic table published in 1869.

Physically, sulfur is a solid crystalline substance stable in two modifications: rhombic α -S of primrose color with density of 2.07 g/cm³ (melting point 112.8°C), and monoclinic β -S of honey color with density of 1.97 g/cm³ (melting point 119.3°C). The both forms are composed of non-planar octatomic cyclic S8 crown-shaped molecules, the difference between them being in different inter-orientation of

the molecules in crystal lattice.

At melting, sulfur transforms into a thin fluid, which grows brown when exceeding 160°C, and becomes a sticky dark-brown mass at about 190°C. When a thin stream of melted sulfur heated to 250-300°C is poured into cold water, a dark-brown elastic mass is formed, called *plastic sulfur*.

Sulfur is a poor conductor of heat and electricity. The substance is practically insoluble in water, poorly soluble in ethanol, hexane and heptane, somewhat better in toluol and benzol. The better solvents of sulfur are liquid ammonia (under pressure), carbon bisulfide (CS_2) and sulfur mono-chloride (S_2Cl_2). The two latter compounds are used in industry (for example, S_2Cl_2 is used at vulcanization of rubber).

Chemical properties of sulfur depend on its variable valence, and, depending on the conditions created, the substance acts as either oxidizer or deoxidizer.

At the same time, sulfur is a chemically active substance able to make compounds practically with all chemical elements, excluding N_2 , I_2 , Au, Pt and inert gases. Subjected to air with CO_2 at a temperature over 300°C, sulfur forms oxides: SO_2 – sulfurous anhydride, and SO_3 – sulfuric anhydride, which are used for obtaining sulfurous and sulfuric acids, respectively, as well as their salts – sulfites and sulfates. In normal conditions, sulfur combines with F_2 , and at heating, also reacts with Cl_2 . Sulfur reacts with bromine forming only S_2Br_2 ; sulfur iodides are not stable.

At rising temperature up to 150-200°C, irreversible reaction starts between sulfur and H_2 , the result being sulfurous hydrogen. Besides, sulfur also forms multi-sulfurous hydrogen with general formula of H_2S_X (the so-called sulfanes). Numerous sulfur-organic compounds are also known.

In conditions of rising temperature, sulfur interacts with metals forming corresponding sulfurous compounds (sulfides) and multi-sulfurous metals (polysulfides). At a temperature of 800-900°C, vapor of S reacts with carbon, forming carbon bisulfide CS_2 .

Over a half of sulfur obtained in the world is used for producing sulfuric acid, while 25% of the substance obtained is used at production of sulfuric salts (mainly sulfites). The rest of the product is used in rubber-processing industry (as curing agent), in agriculture (for coping with diseases of plants, mainly of vine and cotton-plant), at production of colorants and luminous compounds, artificial fiber, matches and explosives.

Sulfur plays a special role in medicine, where the ability of sulfur is used of interaction with organic substances of human body forming sulfides and pentacarbothionic acid, the presence of which influence antimicrobial and antiparasitic effects.

Sulfur compounds are one of the major polluting agents for environment. The principal source of their formation is burning of coal and oil products. At that, 96% of sulfur goes to air in the form of SO₂, and the rest are sulfates, H₂S, CS₂, COS, and other combinations. Besides the negative ecological effect, elemental sulfur, in powder form, brings irritation to respiratory apparatus, mucous membrane, and leads to eczema. MPC in air is 0.07 mg/m^3 .

12

I Production of Sulfur in CIS

I.1 Methods of Obtaining Sulfur in CIS

High geochemical mobility of sulfur in natural geological processes leads to its formation in different natural combinations. Until comparatively recent time, namely the middle of the 19th century, the principal method of obtaining sulfur was a primitive smelting and further purifying through distillation carried out in clay retorts or in special ovens, as well as through sublimation, which allowed obtaining the finest crystals of sulfur due to condensation of vapor of the product, which crystals were used for medical purposes.

There are three principal types of the modern commercial production of sulfur:

- 1. Extraction from virgin ore;
- 2. Obtaining sulfur from sulfur dioxide of industrial and natural gas;
- 3. Obtaining sulfur from sulfur dioxide.

The most industrial enterprises in CIS produce sulfur at processing oil, while the largest potential belongs to enterprises dealing in extraction and processing of natural gas (see Table 1).

I.1.1 Extraction of Sulfur from Virgin Ore

Generally, sulfur ores are mineral formations containing such concentration of virgin sulfur that its extraction is technically possible and economically profitable. As to content of the useful component, sulfur ores are subdivided into *highly rich* (over 25%), *rich* (18-25%), *medium* (12-18%) and *poor* (5-12%) ores.

Types of sulfur ores are defined by composition of surrounding rock, among which carbonate-containing ores take the principal position. Thus, over 90% of the total world extraction is carried out from calcite ores, and much less, from calcite-dolomite, argillaceous, gypsum, quartzite and opal ores.

Mass of natural deposits of sulfur ores, presented by tabular, lenticular and nestshaped bodies of simple and complex form (with streaks of rock), varies within the range of some dozens of centimeters to dozens of meters. Depending on the reserves of sulfur raw material, the masses are subdivided into *large* (over 50 million tons), *medium* (10-50 million tons) and *small* (less 10 million tons) ones.

For extraction sulfur from virgin ores, two methods are mainly used: *mining-technological* (mainly open), the share of which does not exceed a fifth part of the total world extraction, and *geo-technological* (up to 90% of the world extraction). Selection of the extraction technology largely depends on the depth of ore bed, as well as on the content of useful element. Besides, a great attention is paid to security of the process, because sulfur possesses a property of spontaneous ignition, and deposits of sulfur ores are often accompanied by hydrogen sulfide (H₂S), a poisonous gas.

Table 1: Enterprises in CIS Possessing Capacities for Producing Sulfur, andTechnologies Used

Enterprise	Location	Method of	Capacity,
	RUSSIAN FEDERATION		Kt per year
	Aksaraisky settlement.	Gas extraction and	
LLC "Astrakhangazprom"	Astrakhan Region	processing	
	Gas extraction ar	Gas extraction and	
LLC "Orenburggazprom"	Orenburg	processing	
ICC "CN (V "NL- "1-1 N111""	Norilsk, Krasnoyarsk	Non-ferrous	
JSC GMIK NOTIISKY NIKEI	Region	metallurgy	
JSC "Salavatnefteorgsintez"	Salavat, Bashkortostan	Oil processing	
(SNOS)	Republic	On processing	
LLC "LUKOIL-	Derm	Oil processing	
Permnefteorgsintez"		On processing	
JSC "Novoil" ("Novo-Ufimsky	Ufa, Bashkortostan	Oil processing	
NPZ")	Republic	On processing	
JSC "Ufimsky	Ufa Bashkortostan		
Neftepererabatyvayushchy	Republic	Oil processing	
Zavod"	Kepuolie		
JSC "Sibneft – Omsky NPZ"	Omsk	Oil processing	
JSC "Slavneft-	Yaroslavl	Oil processing	
Yaroslavnefteorgsintez"		on processing	
LLC "LUKOIL-	Volgograd	Oil processing	
Volgogradneftepererabotka"	, oigogiau	on processing	
JSC "Moskovsky			
Neftepererabatyvayushchy	Moscow	Oil processing	
Zavod"			
JSC "Kuibyshevsky		0.1	
Nettepererabatyvayushchy	Samara	Oil processing	
Zavod			
CJSC "TAIF-NK"**	Nizhnekamsk, Tatarstan	Oil processing	
	Republic	1 0	
LLC "KINEF"	Kirishi, Leningrad Region	Oil processing	
(Kirisnineiteorgsintez)		Chamical	
JSC "Khimprom"	Volgograd	reduction	
ISC "Seretovaluy		production	
JSC Salalovsky	Saratov	Oil processing	
Zavod"	Saratov	On processing	
ISC "Achinsky			
Naftanararabatwayushchy	Achinsk, Krasnoyarsk	Oil processing	
Zavod"	Region	on processing	
ISC "LUKOUL-			
Ukhtaneftenererabotka"	Ukhta, Komi Republic	Oil processing	
CISC "Neftegorsky			
Gazopererabatyvavushchv	Neftegorsk Samara Region	Petroleum gas	
Zavod"	literegoisk, Sumara Region	processing	
CISC "Otradnensky		Petroleum gas	
Gazopererabatyvavushchv	Otradny, Samara Region	processing	
		II · · · · · · · · · · · · · · · · · ·	

Enterprise	Location	Method of	Capacity,
Zavod"		production	Kt per year
	Krasnovarsk Krasnovarsk	Chemical	
JSC "Sivinit"	Region	production	
	Zelenogorsk Krasnovarsk	Chemical	
JSC "Sibvolokno"	Region	production	
CISC "Russkava	Magnitogorsk Chelvabinsk	production	
Metallurgicheskava Kompaniya"	Region	Coke production	
Natural gas artraction and processing			
Oil processing			
Non formous metalluron			
Non-Jerrous metallurgy			
Chemical production			
Associated petroleum gas pro	ocessing		
Coke production			
Total over Russian Federatio	n		
			·
MSIE "Sara"	Vavorav I vov Bagion	Sulfur deposits	
MSIE Sela	ravolov, Lvov Regioli	development	
SIE "Sera"	Novy Rozdol I you Region	Sulfur deposits	
	Novy Rozdol, Lvov Region	development	
JSC "Lisichansknefteorgsintez"	Lisichansk, Lugansk	Oil processing	
("Linos")	Region	on processing	
CJSC "Ukrtatnafta"	Kremenchug, Poltava	Oil processing	
("Kremenchugsky NPZ")	Region		
JSC "Zaporozhkoks"	Zaporozhie	Coke production	
CJSC "Markokhim"	Mariupol, Donetsk region	Coke production	
JSC "LUKOIL – Odessky NPZ"	Odessa	Oil processing	
JSC "Dneprokoks"	Dnepropetrovsk	Coke production	
Sulfur deposits development			
Oil processing			
Coke production			
Total over Ukraine			
	BYELORUSSIA		1
JSC "Mozyrsky			
Neftepererabatyvayushchy	Mozyr, Gomel Region	Oil processing	
Zavod"			
Oil processing			
	KAZAKHSTAN		•
LLD "Tan airsh armail"	Kulaamu Atamana Dagian	Petroleum gas	
LLP Tengizsnevion	Kuisary, Atyraus Region	processing	
JSC "Zhanazholsky		Petroleum and	
Gazopererabatyvayushchy	Aktobe, Aktiubinsk Region	nrocessing	
Zavod"		processing	
CJSC "Pavlodarsky			
Neftepererabatyvayushchy	Pavlodar	Oil processing	
Zavod"			
Associated petroleum gas processing			

Enterprise	Location	Method of production	Capacity, kt per year
Oil processing			• •
Total over Kazakhstan			
	UZDEVISTAN		
USE "Muharalalar	UZBENISTAN		
USE Mudareksky	Mubarek, Kashkadaria	Natural gas	
Gazopererabatyvayushchy Zavod"	Region	processing	
IX7 497 1- M(1122	Akhunbabayev, Andizhan	Natural gas	
JV "Zaurak-Mill"	Region	processing	
USE "Shurtonn oftogor"	Shurtan, Kashkadaria	Natural gas	
USE Snurtannentegaz	Region	processing	
Natural gas processing			
TURKMENISTAN			
PA "Turkmenmineral"	Govurdak, Turkmenabad	Sulfur deposits	
rA Turkinenininerai	Region	development	
Sulfur deposits development			
Total over CIS			
Natural gas extraction and p	rocessing		
Associated petroleum gas processing			
Sulfur deposits development			
Oil processing			
Non-ferrous metallurgy			
Coke production			
Chemical production			
TOTAL over CIS			

* – transformed into JSC "Omsky NPZ" after absorbing NK "Sibneft" by "Gazprom" (and creating JSC "Gazpromneft"),

** – formed on the base of "Nizhnekamsky Neftepererabatyvayushchy Zavod" in 2005.

Source: State Statistics Office of Russia, State Statistics Office of Ukraine, State Statistics Office of CIS, data from enterprises, "InfoMine"

A. Open mining of sulfur deposits is carried out at shallow production seams (less 100 m). As sulfur ores are rather dense, for their softening, drilling and blasting operations are necessary.

After preliminary softening, the rock is broken off by a bucket excavator and taken off by large dump trucks, which carry it to a dressing factory, where the material is processed using flotation separation method based on the natural hydrophobic property of sulfur and hydrophilic property of rock. Sulfur concentrate, thus obtained, is processed in cauldrons and autoclaves for obtaining raw ("ball") sulfur, which further is refined to finished product.

At pressure leaching process, the dressed concentrate, usually containing up to 80% S, is supplied by pumps to autoclave, in the form of liquid pulp containing chemical agents. Water vapor is also injected there under pressure. Under the influence of the temperature of 130°C, sulfur contained in the concentrate melts, is

separated from the rock, and, after short settling, poured out. If on the stage of preliminary flotation, concentrate obtained contains 70-85% S (at its extraction of 90-97%), commodity product contains over 99% of sulfur at their total extraction within the range of 75-90%.

It should be noted that, along with sulfur ores, pyrites are a most important source for flotation sulfur and its compounds, as well as tails of dressing of sulfide ores.

B. Geo-technological method of obtaining sulfur was developed at the end of the 19th century by G.Frash, an American scientist, now bears his name; the method supposes underground smelting from deposits over 100 m of depth. The main principle of the method is smelting of sulfur in the depth with overheated water (up to 160°C). Due to density twice as large as that of water, molten sulfur sinks to the lower part of the sulfur-ore deposit, whence is pumped out to surface. Supplying water and pumping out the sulfur are carried out through special holes equipped with strings of piping located somewhat coaxial. Forced hot water is filtrated through ore body giving out heat and, therefore, melting the sulfur, and then goes to the surface through water-discharge holes and natural sources.

Technological aspects of the method of Frash first suggested the usage of annular tube construction, the space between the tubes being supplied with overheated water, while the inner tube, heated from all sides, served for lifting of molten sulfur. Modern variant comprises a third, more narrow tube. It is the tube through which compressed air is supplied for lifting the sulfur to surface.

One of unquestionable advantage of the method of Frash, the most effective for dressing rich sulfur ores, is obtaining the pure sulfur, containing up to 99.5% of the element, just at the first stage of processing.

I.1.2 Obtaining Sulfur from Hydrogen Sulfide and Natural Gas

Extraction sulfur from hydrogen sulfide contained in deposits of oil and natural gas pursues primarily an ecological purpose, as utilization of sulfur, of neutralization of its compounds, is compulsory at production of the main hydrocarbon products. In this connection, oil, gas and coal are considered as accompanying sources for obtaining sulfur.

All existing methods of sulfur utilization during processing hydrogen-sulfide containing gases are based on separation of acid gases (H_2S and CO_2) from hydrocarbon phase using various chemical agents (mainly di-ethanolamine or solution of sodium mono-hydro-arsenate) with further oxidation of H_2S to elemental sulfur. On the first stage of the process, formation occurs of a complex arsenic-containing compound:

 $Na_2SA_sS_2 + H_2S = Na_2HA_sS_3O + H_2O$

Then, due to blasting the air through the solution, sulfur precipitates in pure form:

 $Na_2HAsS_3O + SO_2 = Na_2HAsS_2O_2 + S$

At most oil-processing plants, hydrogen sulfide is obtained during the process of purifying accompanying products from sulfur, which exit from gas fractionation unit (GFU) together with liquefied gas. In its turn, input product supplied to GFU is

gaseous fractions formed at the primary processing of oil. It should be noted that, in spite of the fact that sulfur cleaning is compulsory, far from all NPZ produce sulfur in commercial scale (or sulfuric acid, which, as a rule, is an alternative to sulfur).

The principal methods of obtaining sulfur from oil fractions (benzine, kerosene, ligroin etc.) are heat treatment for decomposing sulfurous compounds, further utilization of gaseous forms, and treatment with sulfuric acid, in which they dissolve. However, obtaining of sulfur at processing sulfurous oil requires a considerable consumption of power, which somewhat restrains expanding these processes on all oil fractions obtained during distillation (including black oil).

Along with gas- and oil-processing enterprises, some coke-producing works in CIS also obtain sulfur through desulphurization of the products of gasification (water, air-blast and illuminating gases).

 $2H_2S + O_2 = 2H_2O + 2S$

A similar reaction takes place under the influence of air and activated carbon as catalyst.

I.1.3 Obtaining Sulfur from Sulfur Dioxide

In metallurgy, separation of sulfur occurs during processing concentrates of nonferrous metals. At that, sulfur concentrates in waste gases in the form of sulfur dioxide (SO₂), in the amount of 0.1-3.0%. Further processing of the product requires additional dressing, most often realized by burning extra elemental sulfur.

Just before smelting, sulfide concentrates of non-ferrous metals are subjected to a set of preparatory operations including drying, burning and agglomeration. At that, burning is applied for eliminating a part of sulfur for obtaining matte of the set composition.

Practice of most complexes of the former USSR comprised drying the concentrate, its balling on pan granulators and further partial burning at agglomeration machine. Burning for eliminating excessive sulfur is traditionally carried out in boiling-bed ovens, where the charge comes with 15-35% S. At heating, first water evaporates, the process taking fractions of a second. In the mass of material being burnt, the following reactions occur at a temperature of 700-900°C:

1. Dissociation of higher sulfides and calcium carbonate:

 $MeS_2 = MeS + S; CaCO_3 = CaO + CO_2$

2. Combustion of sulfur vapor:

 $S_2 + 2O_2 = 2SO_2$

3. Oxidizing of sulfides:

 $2MeS_2 + 10O_2 = 2MeO + 4SO_2$

Further, sulfur dioxide (SO_2) obtained at the burning can be reduced by coke for obtaining elemental sulfur.

As to temperature condition, it has been defined by now that the temperature in boiling-bed ovens should be about 900°C. In these conditions, no metal sulfates are formed, the charge becomes somewhat coarser and there is no dust. The necessary degree of desulphurization is provided by supplying strictly defined amount of air, about 0.7-0.9 m³/kg of concentrate. Generally, during burning, up to 40% of the total sulfur can be eliminated.

Most non-ferrous metallurgy enterprises in CIS mainly utilize the sulfurous gases in the form of sulfuric acid, however, one of them, namely trans-polar affiliated enterprise of JSC "GMK "Norilsky Nikel"" (Norilsk), uses exhaust gases of metallurgical processes for commercial production of elemental sulfur.

I.2 Technology of Production of Sulfur and Raw Materials Used by the Largest Manufacturers

I.2.1 Principal Types of Sulfur Ores and Methods of Their Development

Balance reserves of virgin sulfur in CIS reach about 0.8 billion tons $(A+B+C_1 category)$, and are accounted over 16 deposits located on the territories of Russia, Ukraine and Turkmenistan. All these deposits are of two genetic types: exogenous infiltration-metasomatic and volcanogenic hydrothermal-metasomatic, the former being of more practical importance.

Sulfur from exogenous deposits nearly always accompanies sulfate-carbonate rock forming tabular and lenticular deposits. Depending on predominating accompanying rock and minerals, there can be distinguished proper limestone, as well as limestone-dolomite and limestone-gypsum types.

Limestone ores are characterized by high content of sulfur, which, at different deposits, is on the average 25% or something like that. Texture and structure peculiarities divide the ores into vein and ingrained. The former ores contain large amount of large-crystalline calcite, and are characterized by good dressability and melting properties. Fine-ingrained ores are accompanying rock saturated with sulfur; so, even fine grinding of them does not provide isolation of junctions, which leads to poor characteristics of flotation dressing. Some deposits in Prikarpatskaya group in Ukraine – *Yazovskoye, Nemirovskoye* and *Rozdolskoye*, possess the ore of such category.

Yazovskoye deposit (Lvov Region), possessing the largest reserves of sulfur in CIS, is located on comparatively elevated block of south-west slope of Russkaya platform. Its industrial content of sulfur is related to limestone of Upper Tortonian sub-stage, which passes downward along the crosscut and lateral into gypsum-anhydrite rock. Thickness of ore mass varies within the range of 1-25 m; average content of sulfur is 23% (sometimes reaches 28%). Ores are of nest-vein and ingrained character, sulfur is of cryptocrystalline nature.

Other deposit of sulfur ores of limestone type – *Rozdolskoye* (Lvov Region), was the largest in the USSR, and by the beginning of the 90s of the 20^{th} century was at the completion of its development. In 1990, its balance reserves of A+B+C₁ category were 28 kt. Limestone forming the deposit is dense, often cavernous and fissured layers of cryptocrystalline structure. Sulfur mainly occurs in these deposits in the form of inclusions of 0.02 to 6 mm. Rock-forming minerals are mainly calcite and, in small amounts, feldspar, quartz, zircon, rutile and tourmaline.