Research Group

Маркетинговые исследования в области минеральных ресурсов, металлургии и химической промышленности

Обзор рынка тарного стекла для пищевой промышленности в России

Демонстрационная версия

Москва Октябрь, 2007

СОДЕРЖАНИЕ

Аннотация	11
ВВЕДЕНИЕ	
1. Характеристика текущего состояния мирового рынка тарного стекла	14
2. Технология производства стекла в России и в мире и используемое	
для этого оборудование	17
2.1. Технология производства стекла	
2.2. Существующие способы получения тарного стекла	
2.3. Обзор рынка оборудования для производства стеклотары в России	
2.3.1. Российские производители оборудования	
2.3.2. Зарубежные производители оборудования	
3. Сырье для производства стекла в России (запасы, производство,	
объемы и направления поставок)	61
3.1. Кварцевые пески	
3.2. Карбонатное сырье	
3.2.1. Доломит	
3.2.2. Мел	
3.2.3. Известняк и известь	
3.3. Полевой шпат	
3.4. Кальцинированная сода	
3.5. Сульфат натрия	
3.6. Роль стекольного боя в процессе производства стекла в России	
4. Производство тарного стекла в России	
4.1. Объем производства тарного стекла для пищевой промышленности в	
России за период 1997-8 мес.2007 гг.	80
4.2. Основные предприятия-производители тарного стекла в РФ; их	00
мощности, текущее состояние и проекты	84
4.2.1. ООО "Русджам" (Владимирская обл.)	
4.2.2. Концерн Saint Gobain (Франция)	
4.2.3. ЗАО "Веда-Пак" (Ленинградская обл.)	
4.2.4. ОАО "Новосибирский завод "Экран" (Новосибирская обл.)	
4.2.5. ЗАО "Камышинский стеклотарный завод" (Волгоградская обл.).	
4.2.6. ООО "Чагодощенский стеклозавод и К" (Вологодская обл.)	
4.2.7. Ассоциация производителей стекла "РусьСтекло" (Москва)	
4.2.8. OAO "Фирма "Актис" (Ростовская обл.)	
4.2.9. ЗАО "Группа предприятий "ОСТ" (Московская обл.)	
4.2.10. Проекты по созданию новых стеклотарных заводов	
4.3. Прогноз производства тарного стекла в РФ до 2012 г.	
5. Внешнеторговые операции РФ с различными видами стекла за	
период 2000 - 8 мес. 2007 г	109
5.1. Внешнеторговые операции с тарным стеклом (банками и бутылками)	
5.2. Внешнеторговые операции с бутылками	
5.2.1. Экспорт бутылок	
5.2.2. Импорт бутылок	
c.2.2. Initiop to Judion	, 144

5.3. Внешнеторговые операции с банками	131
5.3.1. Экспорт банок	
5.3.2. Импорт банок	
6. Потребление тарного стекла в России	
6.1. Баланс потребления тарного стекла для пищевой промышленности в	
России в 2000-2006 гг	141
6.2. Региональная структура потребления тарного стекла	143
6.3. Крупнейшие потребители тарного стекла	
6.3.1. Потребители бутылок	
6.3.2. Потребители стеклянной консервной тары	
7. Тенденции развития рынка и прогноз потребления тарного стекла на	
ближайшие годы	. 155
Приложение	

Список таблиц

- Таблица 1. Товарная структура производства стеклянной тары в США в 2002-2006 гг., млрд шт.
- Таблица 2. Товарная структура потребления стеклянной тары в США в 2002-2006 гг., млрд шт.
- Таблица 3. Порядок отбора проб шихты для контроля ее качества
- Таблица 4. Технические характеристики стеклоформующего автомата роторного типа BB-7 производства OAO "Стеклоагрегат"
- Таблица 5. Технические характеристики стеклоформующих автоматов карусельного типа АПШ 12 производства ОАО "Стеклоагрегат"
- Таблица 6. Характеристики печей отжига производства ОАО "Орловский завод "Стекломаш"
- Таблица 7. Характеристики транспортеров производства ОАО "Орловский завод "Стекломаш"
- Таблица 8. Характеристики загрузчиков стеклотары производства ОАО "Орловский завод "Стекломаш"
- Таблица 9. Характеристики загрузчика шихты производства ОАО "Орловский завод "Стекломаш"
- Таблица 10. Характеристики молотковой дробилки производства ОАО "Орловский завод "Стекломаш"
- Таблица 11. Характеристики конвейера производства ОАО "Орловский завод "Стекломаш"
- Таблица 12. Характеристики элеватора производства ОАО "Орловский завод "Стекломаш"
- Таблица 13. Технические характеристики питателей капельных производства OAO "Стекломаш"
- Таблица 14. Технические характеристики загрузчика шихты тонкослойного стольного производства ОАО "Стекломаш"
- Таблица 15. Характеристики стеклоформующих машин роторного типа, предлагаемых ОАО "Сигоматик"
- Таблица 16. Характеристики стеклоформующих машин роторного типа, предлагаемых ОАО "Сигоматик"
- Таблица 17. Характеристики печей отжига производства компании Sklostroj
- Таблица 18. Разновидности секционных стеклоформующих машин производства компании Emhart Glass
- Таблица 19. Характеристики секционных стеклоформующих машин IS производства компании Emhart Glass
- Таблица 20. Характеристики секционных стеклоформующих машин IS производства компании Bottero
- Таблица 21. Добыча стекольных песков российскими предприятиями в 2000-2006 гг., тыс. т
- Таблица 22. Объемы поставок кварцевых песков предприятиям стекольной промышленности в 2005-2006 гг., тыс. т

- Таблица 23. Производство доломита для стекольной промышленности в России в 2000-2006 гг., тыс. т
- Таблица 24. Объемы поставок доломита предприятиям стекольной промышленности в 2005-2006 гг., тыс. т
- Таблица 25. Объемы поставок мела предприятиям стекольной промышленности в 2005-2006 гг., тыс. т
- Таблица 26. Производство полевошпатовых материалов в России в 2000-2006 гг., тыс. т
- Таблица 27. Объемы поставок полевошпатовой продукции предприятиям стекольной промышленности в 2005-2006 гг., тыс. т, %
- Таблица 28. Производство кальцинированной соды в России в 2000-2006 гг., тыс. т
- Таблица 29. Объемы поставок кальцинированной соды предприятиям стекольной промышленности в 2005-2006 гг., тыс. т
- Таблица 30. Производство сульфата натрия в России в 2000-2006 гг., тыс. т
- Таблица 31. Объемы поставок сульфата натрия предприятиям стекольной промышленности в 2005-2006 гг., тыс. т
- Таблица 32. Доля переработки стеклотары в странах Европы
- Таблица 33. Производство тарного стекла для пищевой промышленности в России за период 1997 8 мес. 2007 гг., млн шт.
- Таблица 34. Региональная структура производства тарного стекла в России в 1997-2006 гг., млн шт.
- Таблица 35. Производство бутылок крупнейшими российскими предприятиями в 2006 г., млн шт.
- Таблица 36. Производство стеклянной консервной тары крупнейшими российскими предприятиями в 2006 г., млн шт.
- Таблица 37. Объемы и направления отгрузки ж/д транспортом стеклотары производства ООО "Русджам" в 2004-2006 гг., т
- Таблица 38. Объемы и направления отгрузки ж/д транспортом стеклотары производства ОАО "Покровский стекольный завод" в 2004-2006 гг., т
- Таблица 39. Объемы и направления отгрузки ж/д транспортом стеклотары производства ОАО "Ситалл" в 2004-2006 гг., т
- Таблица 40. Объемы и направления отгрузки ж/д транспортом стеклотары производства ЗАО "Кавминстекло" в 2004-2006 гг., т
- Таблица 41. Объемы и направления отгрузки ж/д транспортом стеклотары производства ОАО "Новосибирский завод "Экран" в 2004-2006 гг., т
- Таблица 42. Объемы и направления отгрузки ж/д транспортом стеклотары производства ЗАО "Камышинский стеклотарный завод" в 2004-2006 гг., т
- Таблица 43. Объемы и направления отгрузки ж/д транспортом стеклотары производства ООО "Чагодощенский стеклозавод и К" в 2004-2006 гг., т

- Таблица 44. Объемы и направления отгрузки ж/д транспортом стеклотары производства ООО "Сергиево-Посадский стекольный завод" в 2004-2006 гг., т
- Таблица 45. Объемы и направления отгрузки ж/д транспортом стеклотары производства ЗАО "Великодворский стекольный завод" в 2004-2006 гг., т
- Таблица 46. Объемы и направления отгрузки ж/д транспортом стеклотары производства ОАО "Фирма "Актис" в 2004-2006 гг., т
- Таблица 47. Основные товарные позиции тарного стекла и их кодовые обозначения
- Таблица 48. Товарная структура экспорта и импорта тарного стекла для пищевой промышленности в 2006 г., млн шт.
- Таблица 49. Объемы внешнеторговых операций России с тарным стеклом для пищевой промышленности за период 2000 8 мес. 2007 гг.
- Таблица 50. Экспорт Россией бутылок за период 2000 8 мес. 2007 гг. в натуральном и денежном выражении
- Таблица 51. Региональная структура экспорта Россией бутылок за период 2000 8 мес. 2007 гг.
- Таблица 52. Основные российские экспортеры бутылок из бесцветного стекла емкостью 0,33-1,0 л (код ТН ВЭД 7010904300) за период 2005 8 мес. 2007 гг., млн шт.
- Таблица 53. Основные российские экспортеры бутылок из бесцветного стекла емкостью 0,15-0,33 л (код ТН ВЭД 7010904500) за период 2005-8 мес. 2007 гг., млн шт.
- Таблица 54. Основные российские экспортеры бутылок из цветного стекла емкостью 0,33-1,0 л (код ТН ВЭД 7010905300) за период 2005 8 мес. 2007 гг., млн шт.
- Таблица 55. Импорт Россией бутылок за период 2000 8 мес. 2007 гг. в натуральном и денежном выражении
- Таблица 56. Региональная структура импорта Россией бутылок за период 2000 8 мес. 2007 гг.
- Таблица 57. Основные российские импортеры бутылок из бесцветного стекла емкостью 0,33-1,0 л (код ТН ВЭД 7010904300) в 2005-8 мес. 2007 гг., млн шт.
- Таблица 58. Основные российские импортеры бутылок из бесцветного стекла емкостью 0,15-0,33л (код ТН ВЭД 7010904500) за период 2005 8 мес. 2007 гг., млн шт.
- Таблица 59. Основные российские импортеры бутылок из цветного стекла емкостью 0,33-1,0 л (код ТН ВЭД 7010905300) за период 2005-8 мес. 2007 гг., млн шт.
- Таблица 60. Экспорт Россией банок за период 2000 8 мес. 2007 гг. в натуральном и денежном выражении
- Таблица 61. Региональная структура экспорта Россией банок за период 2000 8 мес. 2007 гг.

- Таблица 62. Основные российские экспортеры стеклянных банок за период 2005 8 мес. 2007 гг., млн шт.
- Таблица 63. Импорт Россией банок за период 2000 8 мес. 2007 гг. в натуральном и денежном выражении
- Таблица 64. Региональная структура импорта Россией банок за период 2000 8 мес. 2007 гг.
- Таблица 65. Основные российские импортеры банок за период 2005-8 мес. 2007 гг., млн шт.
- Таблица 66. Баланс потребления тарного стекла для пищевой промышленности в России в 2000-2006 гг., млн шт.
- Таблица 67. Региональная структура потребления стеклотары для пищевой промышленности в России в 2006 г., млн шт.
- Таблица 68. Производство напитков в России в 2005-2006 гг., млн дкл
- Таблица 69. Крупнейшие потребители стеклянных бутылок в 2005-2006 гг., тыс. т
- Таблица 70. Крупнейшие потребители стеклянных банок в 2005-2006 гг., тыс. т

Список рисунков

- Рисунок 1. Типовая технологическая схема промышленного способа получения стекла
- Рисунок 2. Схема формования узкогорлых толстостенных изделий способом двойного выдувания
- Рисунок 3. Технологическая схема формования изделий на машине карусельного типа
- Рисунок 4. Принципиальная схема работы стеклоформующей машины секционного типа
- Рисунок 5. Внешний вид питателя стекломассы типа DS производства компании Sklostroj
- Рисунок 6. Внешний вид рядовой стеклоформующей машины AL производства компании Sklostroj
- Рисунок 7. Зависимость производственной скорости машин AL производства компании Sklostroj от массы капли, максимальные размеры выпускаемых изделий
- Рисунок 8. Размеры машин AL производства компании Sklostroj
- Рисунок 9. Внешний вид толкателя ZO 220-XXX производства компании Sklostroj
- Рисунок 10. Внешний вид печи отжига производства компании Sklostroj
- Рисунок 11. Динамика производства тарного стекла для пищевой промышленности в России в 1997-2006 гг., тыс. т
- Рисунок 12. Доли производства бутылок российскими предприятиями в $2006 \, \Gamma$., %
- Рисунок 13. Прогноз производства стеклянной тары для пищевой промышленности в России в 2007-2012 гг., млн штук
- Рисунок 14. Динамика экспорта и импорта тарного стекла в 2000-2007 гг., млн шт.
- Рисунок 15. Динамика экспортных поставок бутылок в натуральном и денежном выражении, а также средних экспортных цен на бутылки в 2000-2006 гг.
- Рисунок 16. Динамика импорта бутылок в натуральном и денежном выражении, а также средних импортных цен в 2000-2006 гг.
- Рисунок 17. Динамика экспортных поставок банок в натуральном и денежном выражении, а также средних экспортных цен в 2000-2006 гг.
- Рисунок 18. Динамика импортных поставок банок в натуральном и денежном выражении, а также средних импортных цен в 2000-2006 гг.
- Рисунок 19. Темпы роста "видимого" потребления стеклотары для пищевой промышленности в России в 2000-2007 гг. (2000 г.=100%)
- Рисунок 20. Региональная структура потребления тарного стекла в России в $2006~\Gamma$., %

- Рисунок 21. Динамика производства водки и пива в России в 2000-2006 гг., млн дкл
- Рисунок 22. Динамика производства плодоовощных консервов в России в 2000-2006 гг., млн усл. банок
- Рисунок 23. Товарная структура производства плодоовощных консервов в России в 2006 г., %
- Рисунок 24. Прогноз потребления стеклотары для пищевой промышленности в России в 2007-2012 гг., млрд шт.

Аннотация

Настоящий отчет посвящен обзору российского рынка тарного стекла для пищевой промышленности. Отчет подготовлен на основе изучения и анализа данных Федеральной службы государственной статистики РФ (Росстат), Федеральной таможенной службы РФ, статистики внутренних железнодорожных перевозок, ведущих игроков стекольного рынка, Государственных балансов запасов полезных ископаемых, а также данных "Инфомайн". Отчет содержит 158 страниц, в том числе 70 таблиц, 24 рисунка и приложение.

Первая глава отчета посвящена характеристике текущего состояния мирового рынка тарного стекла.

Во второй главе приведены технологии производства стекла. Описаны основные технологические процессы и существующие способы получения тарного стекла. Также в этом разделе приводится обзор российского рынка оборудования для производства стеклотары. Описаны ведущие российские и зарубежные производители, приведены характеристики выпускаемого ими технологического оборудования.

В третьей главе рассмотрены источники сырья для производства стекла. Приведены запасы кварцевых песков, карбонатного сырья и полевого шпата, данные об объемах производства основных компонентов стекольной шихты, объемах и направлениях поставок сырьевых материалов.

Четвертая глава посвящена анализу производства тарного стекла в России. В этом разделе приведены статистические данные о выпуске исследуемой продукции за период 1997-8 мес.2007 г. Оценена товарная структура производства тарного стекла для пищевой промышленности, региональная структура его производства, описаны основные предприятия-производители тарного стекла с указанием имеющихся мощностей, объемов выпуска продукции в 2006 г., текущем состоянии и перспектив развития. Также в этом разделе описаны проекты по созданию новых стеклотарных производств в России и приведен прогноз производства тарного стекла в России на период до 2012 г.

В пятой главе проведен анализ внешнеторговых операций российских компаний с тарным стеклом. Приведены данные об объемах поставок бутылок и консервных банок в натуральном и денежном выражении, оценена региональная структура экспорта и импорта, объемах и направлениях поставок ведущих экспортеров и импортеров исследуемой продукции.

Шестая глава посвящена оценке внутреннего потребления тарного стекла для пищевой промышленности. В этой главе приведен баланс производства-потребления тарного стекла, оценена региональная структура потребления. Также приведены сведения о динамике изменения объемов производства в основных потребляющих отраслях и объемах отгрузки стеклотары крупнейшим потребителям железнодорожным транспортом.

В седьмой, заключительной главе отчета, описаны существующие тенденции развития рынка тарного стекла для пищевой промышленности и приведен прогноз потребления данной продукции в России на период до $2012\ \Gamma$.

В приложении к отчету приведены контактные данные ведущих российских производителей стеклотары.

ВВЕДЕНИЕ

Стекло представляет собой твердый аморфный материал, получаемый в процессе переохлаждения жидкости – расплава неорганических оксидов, водного раствора солей, жидкого металлического расплава и т.д. Обладая механическими свойствами твердого тела, стекло характеризуется термодинамической метастабильностью и при определенных условиях склонно кристаллизации. Занимая агрегатному состоянию ПО промежуточное положение между жидкими И кристаллическими веществами, стекло качественно от них отличается – оно рентгеноаморфно (вследствие неупорядоченного атомного строения), изотропно, не имеет определенной температуры застывания и плавления: при охлаждении расплав сначала переходит из жидкого состояния в пластичное, и только затем в твердое. При этом процессы нагревания и охлаждения (если не происходит кристаллизации) обратимы.

Классификация стекла ведется в соответствии с его составом или же назначением. В первом случае различаются одно- и многокомпонентные материалы, состоящие из различных элементов (как металлов, так и неметаллов), оксидов, галогенидов и др. Однокомпонентные стекла способны образовывать небольшое число металлов (хром, железо, алюминий, никель, ванадий, цинк, кальций и др.), а также крайне ограниченное количество неметаллов (в том числе сера, селен, мышьяк, углерод, фосфор). Наиболее же видное место в ряду однокомпонентных стекол занимают материалы, образованные оксидами, прежде всего диоксидом кремния (SiO_2) – кварцевое стекло.

Согласно назначению различаются следующие виды стекла:

- строительное (листовое и архитектурно-строительное);
- тарное (стеклянные банки и бутылки);
- сортовое (стеклянная посуда);
- техническое (оптическое, химико-лабораторное, медицинское, электроизоляционное);
 - стеклянное волокно (стекловолокно).

1. Характеристика текущего состояния мирового рынка тарного стекла

Тарное стекло причисляется к категории продукции массового производства. К стеклянной таре в общем случае относятся емкости для пищевых продуктов (бутылки, банки), а также медицинская (предназначенная для фасовки лекарственных препаратов), парфюмерная и химическая тара (используемая для хранения химических реактивов). При этом необходимо подчеркнуть, что около 99% от всего выпуска в мире (по массе) приходится на тару для пищевых продуктов.

Оценка выпуска тарного стекла может вестись как в килограммах, так и в условных бутылках, причем в последнем случае за условную единицу принята бутылка объемом 0,5.

На сегодня в мире действует огромное количество заводов, выпускающих стеклянную тару, количество которых на порядок превосходит количество производителей листового стекла, что объясняется как большей степенью востребованности продукции, так и более простой технологией и меньшими капитальными затратами организации выпуска тары.

По оценкам экспертов, по итогам 2005 г. в мире было выпущено не менее 60 млн т тарного стекла, что соответствует примерно 90% действующих мощностей. Принимая во внимание вес бутылки емкостью 0,5 л, равный 0,36 кг, можно утверждать, что данному значению соответствует эквивалент около 167 млрд условных единиц продукции.

Крупнейшим производителем стеклянной тары в мире выступает концерн *Owens-Illinois*, имеющий 83 завода в 22 странах мира. Компания является лидером по производству тарного стекла в Европе, Северной и Южной Америке, и Азиатско-Тихоокеанском регионе. В США концерн поставляет на рынок две трети всех бутылок, тогда как в мире в целом – около половины от общего количества.

Объемы производства и потребления стеклянной тары в США в 2002-2006 гг. приведены в табл. 2-3. Как видно из представленных данных, в 2002-2004 гг. в США наблюдалось ежегодное снижение объемов выпуска обусловило стеклотары, что выход крупнейших американских производителей на новые растущие рынки данной продукции, в том числе и российский. Так в 2005 г. Owens-Illinois приобрел крупный стекольный завод в Московской области. Однако, несмотря на достаточно "Ост-Тара" стабильные объемы потребления стеклянной тары, в 2005-2006 гг. наблюдался рост ее производства и, как следствие, увеличение объемов экспортных поставок.

Таблица 1. Товарная структура производства стеклянной тары в США в 2002-2006 гг., млрд шт.

	Объем потребления, млрд шт.				Объем потребления, м.		Доля в
Продукция	2002	2003	2004	2005	2006	2006 г., %	
Бутылки для пива	18,9	20,0	19,8	19,8	21,0	59,0	
Стеклянная тара для консервирования и пищевых продуктов	7,1	6,8	6,4	6,1	5,8	16,2	
Стеклянная тара для безалкогольных напитков	3,2	2,9	3,0	3,1	3,1	8,8	
Бутылки для ликеров и алкогольных коктейлей	3,2	2,2	2,3	2,3	2,2	6,3	
Бутылки для вина	1,8	1,8	1,9	1,9	1,9	5,4	
Прочие виды стеклотары	1,6	1,4	1,3	1,9	1,6	4,3	
Производство, всего	35,8	35,1	34,7	35,1	35,6	100,0	

Источник: US CENSUS Bureau

Таблица 2. Товарная структура потребления стеклянной тары в США в 2002-2006 гг., млрд шт.

	Объем потребления, млрд шт.				Доля в	
Продукция	2002	2003	2004	2005	2006	2006 г., %
Стеклянная тара для консервирования и пищевых продуктов	6,8	6,8	6,5	6,3	5,9	16,9
Стеклянная тара для безалкогольных напитков	3,5	2,8	3,0	3,2	3,1	8,8
Бутылки для пива	18,7	19,1	19,6	19,7	20,4	58,5
Бутылки для ликеров и алкогольных коктейлей	3,1	2,4	2,3	2,4	2,0	6,1
Бутылки для вина	1,7	1,8	1,8	1,9	1,9	5,4
Прочие виды стеклотары	1,5	1,4	1,3	1,8	1,5	4,3
Потребление, всего	35,3	34,3	34,5	35,3	34,8	100,0

Источник: US CENSUS Bureau

Стеклотарная промышленность *Европы* в последние годы сохраняла умеренный, но последовательный рост объемов производства. За период 1999-2004 гг. объем физического производства (в тоннах) увеличивался в среднем на 1,2% в год, несмотря на снижение этого показателя в 2003 г. до 0,3%, что явилось отражением общих неблагоприятных тенденций в европейской экономике. По экспертным оценкам объем производства

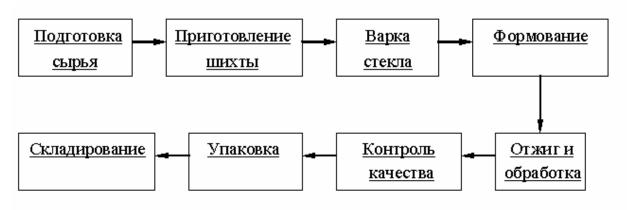
стеклотары в Европе в 2005 г. составил порядка 19,0-19,5 млн т, что соответствует третьей части мирового производства.

Наряду с существенным количеством самостоятельных стеклотарных предприятий, действующих в Европе, в регионе сформировались и крупные холдинги, которые выпускают большую часть стеклянной тары. Крупнейшими из них могут быть названы:

- Saint Gobain, владеющий 18 предприятиями, 6 из которых находятся во Франции, 6 – в Италии, 5 – в Германии и 1 – в Испании;
- европейские подразделения крупнейшей стеклотарной компании Owens-Illinois (12 заводов);
- VetroPack (6 заводов);
- Ardagh Glass (22 заводf).

Стекольная промышленность европейских стран характеризуется высоким техническим уровнем производства и применением новейших технологий, при этом значительная часть стеклянной тары, выпускаемой в регионе, направляется на экспорт.

Проводимое в последнее время активное внедрение пластиковой упаковки на рынках европейских стран пока не принесло весомых результатов. Что касается конечного потребителя, его отношение к стеклянной таре, в основном, обусловлено представлением о соответствии стеклянной упаковки признанным критериям качества жизни, к которым относится забота о здоровье и состоянии окружающей среды, минимизация бытовых отходов, а также безопасность пищевых продуктов.


Основными потребителями стекла в Европе выступают крупные (Heineken, Budweiser, пивоваренные компании Pauleiner др.), производители шампанского и вина, крепких алкогольных и безалкогольных напитков (Coca-Cola, Pepsi), а также минеральной воды. Важно отметить, что некоторые ИЗ подобных компаний (например, Heineken). владеют собственными стеклотарными заводами.

2. Технология производства стекла в России и в мире и используемое для этого оборудование

2.1. Технология производства стекла

Традиционная технология промышленного способа получения стекла состоит из подготовки сырьевых материалов; приготовлении шихты; варки стекла; охлаждения стекломассы; формования изделий; их отжига и обработки (термической, химической или механической). Затем стекло подвергается контролю качества, упаковывается и складируется (рис. 1).

Рисунок 1. Типовая технологическая схема промышленного способа получения стекла

Источник: ГНИИС

Подготовка сырья

Основная подготовка стекольного сырья производится непосредственно на стекольных заводах. Данный процесс включает следующие операции:

- помол и дробление тех материалов, которые поступают на завод в виде кусков (доломит, известняк и др.);
- сушку тех материалов, которые поступают на завод влажными (песок, доломит, известняк);
- просеивание всех поступающих на завод материалов через сита определенного размера.

В тех случаях, когда песок поступает с обогатительных фабрик, он подвергается только просеву. После просеивания все сырьевые материалы подаются в бункера хранения подготовительного сырья, откуда оно поступает на дозирование.

Приготовление стекольной шихты

Стекольной шихтой называют однородную смесь предварительно подготовленных и отвешенных по заданному рецепту сырьевых материалов.

В настоящее время на стекольных заводах приготовление шихты ведется в механизированных составных цехах, предусматривающих полный цикл операций по подготовке и усреднению сырья, которые включают склад сырья с приемным павильоном и дозаторно-смесительное отделение. Последнее состоит из расходных бункеров сырья, помещения распределения материалов из силосов (и других мест хранения) в расходные бункера у дозировочно-смесительной линии. В состав такой линии входят автоматические весы, смесители, транспортирующие устройства и бункера хранения шихты.

Важнейшими стадиями приготовления стекольной шихты являются:

- дозирование компонентов;
- смешивание и увлажнение шихты;
- введение стеклянного боя;
- контроль качества.

Дозирование компонентов стекольной шихты

Дозирование компонентов шихты осуществляется *дозаторами*, которые должны обеспечивать высокую точность процесса в условиях его высокой производительности, а также надежность работы и гибкую переналадку.

Процесс дозирования в современных механизированных составных цехах осуществляется по трем основным технологическим схемам:

- линейное расположение дозаторов под расходными бункерами сырья с подачей отвесов на горизонтальный сборный транспортер;
- линейное расположение расходных бункеров и проведение процесса дозирования в весы-тележку;
- башенное расположение расходных бункеров сырья и проведение процесса дозирования всех компонентов шихты с помощью одних весов.

Важно подчеркнуть, что последняя из приведенных схем не нашла применения на российских заводах, в то время как за рубежом широко используется.

Смешивание и увлажнение стекольной шихты

Отвешенные в соответствии с заданным составом компоненты шихты ленточным конвейером подаются в смеситель, расположенный под весовой линией.

Для перемешивания взвешенных компонентов в мировой практике применяются следующие виды оборудования:

- -смесители тарельчатого типа с подвижной и неподвижными чашами;
- -барабанные или конусные смесители грушевидной формы (бетономешалки) чаще всего с горизонтальной или наклонной осью вращения;
 - -непрерывно действующие шнековые смесители;
 - пневматические смесители.

Наибольшее распространение в стекольной промышленности получили тарельчатые смесители. Смешение материалов в них происходит в кольцевом объеме чаши за счет кругового вращения подгребающих и смешивающих лопастей с одновременным самостоятельным вращением их относительно внутренней поверхности кольцевой чаши.

Увлажнение шихты производится на стадии ее смешивания с целью придания материалу влажности, изменяющейся в диапазоне 3,5-4,5%. При этом нижний предел влажности обусловлен повышенным расслоением сухой шихты при ее транспортировании и загрузке в печь, а верхний является оптимальным как для скорости варки шихты, так и с точки зрения удержания влаги в сыпучем материале. При большей влажности шихты требуется дополнительная энергия на ее испарение, и скорость варки в этом случае снижается.

На стекольных заводах используются следующие варианты увлажнения шихты:

- предварительное увлажнение одного песка и последующая подача в смеситель остальных компонентов;
- предварительное увлажнение смеси песка с доломитом и последующая подача в смеситель остальных компонентов;
- увлажнение всей шихты приблизительно в середине процесса ее смешивания (именно этот метод получил наиболее широкое распространение).

Введение боя в стекольную шихту

Традиционно в стекловаренную печь шихта подается со стеклобоем в соотношении: 75-85% шихты -15-25% стеклобоя. Однако в последние десять лет эти пропорции на отечественных заводах существенно изменились, и на сегодня доля боя выросла до 30-50%, а иногда и более.

Практикуется несколько вариантов введения боя в шихту:

- смешивание стеклобоя с шихтой в смесителях, для чего бой предварительно измельчается до крупности кусков не более 10-15 мм, что обеспечивает необходимую текучесть;
- создание слоев шихты и боя на ленточном транспортере, откуда они поступают в бункера загрузчиков, частично смешиваясь при сбросе;
- смешивание боя с шихтой в особом смесителе, расположенном вблизи загрузочного кармана стекловаренной печи (этот вариант широко используется в зарубежных проектах);
- загрузка шихты на подслой боя с помощью роторных загрузчиков (этот вариант требует наиболее сложного механического оборудования, что сдерживает его распространение).

Контроль качества стекольной шихты

Основными показателями качества стекольной шихты служат соответствие ее заданному химическому составу и химическая однородность.

Существует два варианта контроля качества шихты: текущий и периодический (табл. 3).

Таблица 3. Порядок отбора проб шихты для контроля ее качества

Параметры контроля	Текущий контроль	Периодический контроль
Цель контроля	Проверка соответствия шихты заданному рецепту	Проверка работы смесителя и однородности шихты
Контролируемые параметры	Сода, сумма карбонатов кальция и магния, сумма нерастворимых в HCl компонентов, сульфат натрия, влага	_
Место отбора пробы	На выходе из смесителя, из расходных бункеров шихты, транспортер	Смеситель, вагонетка, бункер загрузчика, транспортер
Масса средней пробы, кг	До 10	2-10
Масса частной пробы, кг	0,2	0,2
Число частных проб	4-6	До 10
Масса лабораторной пробы, г	100	100

Источник: ГНИИС

Отбор проб шихты на контрольные анализы производится после завершения процесса ее смешения.

Наиболее прогрессивным методом контроля шихты является рентгеноспектральный анализ. Только этот метод позволяет получать информацию о содержании в шихте отдельных оксидов с точностью 0,2-0,3% в течение 30 минут, в то время как проведение подобного анализа химическим методом может длиться от 45 минут до 1,5 часов.

Варка стекла

В общем случае под варкой стекла или стекловарением понимают термический процесс, в результате которого смесь разнородных компонентов образует однородный расплав. Сущность процесса заключается в нагревании шихты в печах различных конструкций, в результате чего она превращается в жидкую стекломассу, претерпевая сложные физико-химические взаимодействия компонентов, происходящие на протяжении значительного временного интервала.

Различается пять основных этапов варки стекла:

1) Силикатообразование, на стадии которого образуются силикаты и другие промежуточные соединения. Для стекол обычного состава этот этап завершается при температуре 950-1150°C;

- 2) Стеклообразование, в ходе которого образовавшийся на первом этапе спек с повышением температуры плавится, завершаются реакции силикатообразования, а также происходит взаимное растворение силикатов. В расплаве силикатов протекает весьма медленное, постепенное растворение избыточного кварца, составляющее главное содержание этого этапа. К моменту его окончания образуется прозрачный неоднородный по составу расплав, включающий много пузырей. В общем случае этап стеклообразования завершается при температуре 1200-1250°C;
- 3) Осветление (дегазация), на протяжении которого из расплава удаляются видимые газовые включения крупные и мелкие пузыри. Для обычных стекол этап завершается при $1500-1600^{\circ}$ C;
- 4) Гомогенизация (усреднение), на стадии которой происходит усреднение расплава по составу, и он становится химически однородным. Важно отметить, что гомогенизация протекает одновременно с осветлением и в том же диапазоне температур;
- 5) Студка (охлаждение), в ходе которой происходит подготовка стекломассы к формованию, для чего температуру равномерно понижают до 300-400 °C, добиваясь тем самым необходимой вязкости стекла.

Разделение процесса стекловарения на пять этапов является весьма условным — в реальных промышленных условиях они накладываются друг на друга. Только первый и пятый этапы разделены в печах временем и пространством, тогда как первая и вторая стадии стекловарения одновременно начинаются и совмещаются до завершения стеклообразования, а затем третий и четвертый этапы идут нераздельно.

Формование

Процесс формования стекла является основной и важнейшей после стекловарения технологической стадией, и совокупность этих двух непосредственно связанных процессов определяет механизированное стекольное производство, профиль его специализации, его технический уровень и экономическую эффективность.

Процесс формования складывается из двух основных этапов, определяющих его ход: деформирования стекломассы и ее постепенного твердения, которое развивается и продолжается на протяжении всего формования.

Первая стадия – формообразование – осуществляется в температурновязкостной области собственно формования, т.е. в условиях, когда стекломасса сохраняет способность к течению и пластической деформации; в предельном интервале вязкости от 102 до 4·107 Па·с, что приблизительно отвечает диапазону температур 1200-800°С. На данном этапе стекломасса приобретает конфигурацию формуемого изделия в результате ее деформации под действием приложенных внешних сил, которая регулируется в соответствии с видом изделия и способом его формования. Скорость и продолжительность процесса обусловлены реологическими и