

Объединение независимых экспертов в области минеральных ресурсов, металлургии и химической промышленности

Обзор рынка скандия в СНГ

Демонстрационная версия

Москва июль 2011

Internet: <u>www.infomine</u>.ru e-mail: <u>info@infomine</u>.ru

СОДЕРЖАНИЕ

Аннотация	7
ВВЕДЕНИЕ	8
1. Краткая характеристика мирового рынка скандия	10
1.1. Минерально-сырьевая база скандия	
1.2. Мировое производство скандия и скандиевого сырья	12
1.3. Мировое потребление скандия	13
1.4. Цены на скандий и его соединения	17
2. Минерально-сырьевая база скандия в СНГ	19
Россия	
Украина	21
Казахстан	
3. Экспортно-импортные операции со скандиевыми продуктами	ı в СНГ22
3.1. Россия	
3.1.1. Экспорт оксида и солей скандия из России	22
3.1.2. Импорт оксида скандия	
3.1.3. Экспорт-импорт металлического скандия из России в 200	01-2010 гг. 27
3.1.4 Экспорт алюмо-скандиевой лигатуры из России	
3.2. Украина	
3.3. Казахстан	
4. Производство скандия и его соединений в странах СНГ	32
4.1. Добыча и переработка скандийсодержащего сырья, производо	
скандиевой продукции в странах СНГ	
4.2. Основные предприятия-производители скандиевой продукции	
4.2.1. OAO «Гидрометаллургический завод» (ПО «Алмаз»)	
4.2.2. Государственное предприятие «Восточный горно-	
обогатительный комбинат» (г. Желтые воды, Украина)	37
4.2.3. AO «Каскор» (Прикаспийский ГМК, Казахстан)	
4.2.4. АО Усть-Каменогорский титано-магниевый комбинат	
(Казахстан)	39
4.2.5. OAO «АВИСМА»	40
4.2.6. OAO «MACT» (Металлургия алюминия, скандия, титана)	41
4.2.7. Другие предприятия	45

5. Проекты по производству скандия в странах СНГ	46
5.1. Проект по получению скандия из хвостов АО «Качканарский ГОК –	
Ванадий»	46
5.2. Проект по разработке Томторского месторождения	
5.3. Проекты по извлечению скандия из «красных шламов» предприятий	
Урала	49
5.4. Проект разработки Хиагдинского месторождения	
5.5. Проект получения скандия из отходов предприятий Запорожской	
области	50
6. Потребление скандия и его соединений в РФ	51
7. Прогноз по производству и потреблению скандия	53
Приложение: Адресная книга основных производителей скандиевой продукции СНГ	55

СПИСОК ТАБЛИЦ

- Таблица 1. Цены на скандий и его соединения в 1983-2010 гг. на рынке США, \$/г
- Таблица 2. Месторождения скандия России, учтенные Государственным балансом на 01.01.2007 г.
- Таблица 3. Скандиеносность техногенных отходов
- Таблица 4. Основные российские экспортеры соединений скандия в 2001-2010 гг., кг
- Таблица 5. Направления экспортных поставок соединений скандия из России в 2001-2010 гг., кг
- Таблица 6. Импортеры российских соединений скандия в 2001-2010 гг., кг
- Таблица 7. Импортеры российского металлического скандия по фирмам и странам в 2001-2010 гг., кг
- Таблица 8. Экспорт алюмо-скандиевых лигатур из России в 2001-2010 гг., т
- Таблица 9. Направления поставок алюмо-скандиевых лигатур по странам в 2001-2010 гг., т
- Таблица 10. Требование к качеству скандия металлического, %
- Таблица 11. Требование к качеству оксида скандия (ТУ 48-0501-373-92), %
- Таблица 12. Качество оксида скандия ПО «Алмаз», %
- Таблица 13. Качество алюмо-скандиевой лигатуры производства ПО «Алмаз»
- Таблица 14. Характеристики алюминиевых лигатур, производимых ЗАО «МАСТ» (ГОСТ Р 53777-2010)
- Таблица 15. Баланс экспорта-импорта скандия в России в 2001-2010 гг, кг

СПИСОК РИСУНКОВ

- Рисунок 1. Цены на оксид скандия разной чистоты 2010 г., рынок США, \$/кг
- Рисунок 2. Экспорт оксида скандия из России в 2001-2010 гг., кг
- Рисунок 3. Импортные поставки оксида скандия в Россию в 2001-2010 гг. и экспортные цены, \$/кг
- Рисунок 4. Экспортные поставки металлического скандия из России в 2001- 2010~гг., кг
- Рисунок 5. Экспортные поставки оксида скандия из Украины в 2001-2010 гг., кг

Аннотация

Представленный отчет посвящен обзору рынка скандия и его соединений в СНГ. Отчет подготовлен на основе изучения и анализа данных Федеральной службы государственной статистики РФ (ФСГС РФ), Украины, Федеральной службы стран Кахахстана, таможенной ЭТИХ официальной статистики железнодорожных перевозок, внутренних Госкомстата а также данных "Инфомайн". Отчет состоит из 7 глав, содержит 55 страниц, в том числе 15 таблиц, 5 рисунков и 1 приложение.

Первая глава отчета посвящена минерально-сырьевой базе и производстве скандия и его соединений за рубежом. Приведены сведения о мировой добыче, ценах на скандий в зависимости от качества.

Вторая глава отчета посвящена минерально-сырьевой базе скандия в РФ и странах СНГ. Даны краткие характеристики балансовых месторождений скандия, а также перспективных сырьевых объектов.

В третьей главе анализируются внешнеторговые операции со скандием и его соединениями в 2001-2010 гг. Приведены данные об объемах экспорта и импорта изучаемой продукции, оценена региональная структура поставок.

В четвертой главе приведены сведения о производстве скандия и скандиевых соединений в России в 2001-2010 гг. Рассмотрены основные производители. Представлены ГОСТы и ТУ на производимую скандиевую продукцию.

Пятая глава посвящена описанию программ по развитию скандиевой промышленности РФ и новым проектам.

В шестой главе дана оценка потребления скандия в России.

В седьмой главе рассмотрены перспективы применения и получения скандия в нашей стране.

В приложении указана контактная информация производителей скандия и его соединений.

ВВЕДЕНИЕ

Скандий — один из самых дорогих редких металлов с малым объемом производства. Это типичный литофильный элемент, характеризующийся с одной стороны, геохимической близостью с редкими землями иттриевой группы, с другой — близостью к магнию и железу. В природе он встречается преимущественно в рассеянном состоянии, хотя его кларк выше, чем у бора, молибдена и вольфрама (0,0017%).

Основная масса скандия рассеяна в силикатах магния и двухвалентного железа. В качестве примесей он постоянно присутствует в вольфрамите, касситерите, ильмените, цирконе, редкоземельных минералах (ксенотиме, монаците), берилле и нерудных минералах. Минералы с повышенной скандиеносностью содержат его в количестве 0,01% и выше. Собственно скандиевым минералом является тортвейтит ($(Y, Sc)_2Si_2O_7$), который иногда образует собственные месторождения.

Металлический скандий высокой чистоты представляет собой плотный, относительно мягкий металл серебристого цвета. По своей прочности он превосходит редкоземельные металлы, хорошо обрабатывается и сваривается, химически активен. Это один из наиболее легких металлов (плотность скандия - $3,02 \text{ г/cm}^3$). Температура плавления - 1544^0 C. На воздухе при комнатной температуре он покрывается тонкой пленкой оксида, что предотвращает его дальнейшее окисление.

Материалы с добавлением скандия обладают выдающейся пластичностью и коррозионной стойкостью.

Скандий был выделен Нильсоном из гадолинита и назван в честь Скандинавии. В 1937 г. этот металл был впервые получен электролизом хлорида скандия в расплаве солевой ванны. В настоящее время его получают несколькими путями. На первом этапе — попутно при гидро- и пирометаллургической переработке вольфрамовых, оловянных, урановых концентратов и бокситов — получают оксид, который хлорируют или фторируют при 700-800°C с выделением фторидов и хлоридов. Для извлечения скандия из соединений используют электролитические или металлотермические методы. Скандий и его соединения экологически безопасны.

Крупномасштабное промышленное использование скандия сдерживается высокой ценой, обусловленной малыми объемами его производства и сложной технологией получения.

В мировой промышленности скандий применяется главным образом в виде сплавов и соединений. В частности добавка в алюминиевые сплавы 0,1-0,3% скандия увеличивают их прочность в три раза, и они становятся способными к свариванию.

Наиболее емкие области потребления скандия в настоящее время: производство сплавов на основе алюминия, в том числе для спортивного инвентаря, производство мощных металлогалогенных ламп, лазерная

техника, специальная керамика. В частности обшивка космического аппарата «Буран» была сделана именно из Al-Sc сплава.

1. Краткая характеристика мирового рынка скандия

1.1 Минерально-сырьевая база скандия

Содержание скандия в земной соизмеримо с содержанием таких элементов, как вольфрам, молибден, германий, олово, уран, ртуть. Однако при этом скандий широко рассеян в природе и поэтому редко образует месторождения собственных минералов. В виде основного компонента скандий встречается только в одном достаточно редком минерале – тортвейтите (скандий-иттриевый силикат).

С другой стороны, этот металл в качестве примеси широко присутствует в минералах циркония, бериллия, титана, ниобия, редкоземельных элементов (особенно иттриевой группы), вольфрама, ванадия, олова, урана и алюминия.

Мировые запасы скандия имеют достаточно приблизительную оценку. Нижний предел этих оценок западных специалистов составляет 2400 т, а верхний предел от 0.5 до 1.8 млн т. Такой разброс значений связан со сложностью оценки запасов из-за природной рассеянности скандия в самых разнообразных типах руд.

Большие запасы скандия в титаномагнетитах оценены в Норвегии. В крупном (200 млн т руды) намечавшемся к освоению месторождении титианомагнентитов Селваг, оконтурены общие запасы скандия 5 т при содержании до 70 г/т. Еще более крупное месторождение расположено на юге страны, но правительство страны выступило против его разработки, так как месторождение находится в национальном заповеднике.

Большой сырьевой базой скандия владеет **Китай**, где имеются крупные скандиеносные месторождения: вольфрамовое в провинции Цзянси, титаномагнетитовое в провинции Фуцзянь, вольфрамо-бериллиевое в провинции Чжецзян, оловянные в провинции Гуанси и Гуандун. Прогнозные ресурсы скандия в Китае оцениваются в несколько сотен тыс. т, в том числе 63% в ильменитовых рудах, 31% — в колумбитовых и в небольшом количестве в вольфрамо-оловянных и железных рудах.

В США основные запасы скандия заключены в хвостах разработки флюоритового месторождения Crystal Mountain, расположенного в штате Массачусетс. Накопленные за период 1952-1971 гг. отходы содержат тортвейтит и другие обогащенные скандием минералы. В штата Оклахома ресурсы скандия имеются в отходах разработки танталовых руд (содержание Sc — 0,24%). Меньшие ресурсы содержатся в W-, Мо- и Ті-минералах месторождения Клаймакс в шт. Колорадо.

В **Австралии** запасы скандия известны в урановых рудах и хвостах их разработки. Наиболее крупное открытие последних лет — месторождение Лейк Иннес в латеритных корах выветривания серпентинитов в шт. Новый Южный Уэльс. Запасы руды здесь оцениваются в 9 млн т с содержанием никеля 0,8%, кобальта — 0,11% и скандия — 36 г/т. Запасы скандия составляют 500 т при среднем содержании 36 г/т и 40 т при среднем содержании 76 г/т.

Предполагается невысокая себестоимость скандия, так как месторождение доступно для открытой отработки с невысокой вскрышей, и руды не требуют больших затрат на дробление и измельчение.

В Японии, по данным Геологической службы США, рудопроявление тортвейтита обнаружено в районе г. Кобе.

Несмотря на отсутствие количественной оценки, мировые запасы и ресурсы скандия в странах дальнего зарубежья благодаря разнообразию источников сырья считаются вполне достаточными для удовлетворения любого уровня прогнозируемого спроса, и проблемы с сырьевой обеспеченностью не представляются актуальными.